Nonionic diethanolamide amphiphiles with unsaturated C18 hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behavior.
نویسندگان
چکیده
The neat and lyotropic liquid crystalline phase behavior of three nonionic diethanolamide amphiphiles with C18 hydrocarbon chains containing one, two or three unsaturated bonds has been examined. This has allowed the effect of degree of unsaturation on the phase behavior of diethanolamide amphiphiles to be investigated. Neat linoleoyl and linolenoyl diethanolamide undergo a transition from a glassy liquid crystal to a liquid crystal at ∼-85 °C, while neat oleoyl diethanolamide undergoes a transition at ∼-60 °C to a liquid crystalline material before re-crystallizing at -34 °C. Oleoyl diethanolamide then undergoes a third transition from a crystalline phase to a smectic liquid crystalline phase at ∼5 °C. In the absence of water, the transition temperature from a smectic liquid crystal to an isotropic liquid decreases with increasing unsaturation. The addition of water results in the formation of a lamellar phase (L(α)) for all three amphiphiles. The lamellar phase is stable under excess water conditions up to temperatures of at least 70 °C. Approximate partial binary amphiphile-water phase diagrams generated for the three unsaturated C18 amphiphiles indicate that the excess water point for each amphiphile occurs at ∼60% (w/w) amphiphile.
منابع مشابه
Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour.
The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass trans...
متن کاملPhysicochemical characterization of natural-like branched-chain glycosides toward formation of hexosomes and vesicles.
Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D...
متن کاملLyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.
Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethyle...
متن کاملThermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties
Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of ...
متن کاملMembrane Structure and Permeation Property of Polymer/Liquid Crystal Composite
Tisato Kajiyama Faculty of Engineering, Kyushu University, Fligashi-ku, Fukuoka 812 A bimolecular membrane of phospholipids such as lecithin is in a state of liquid crystal capable of reversible structural modifications and its permeation property depends on such reversible change. Artificial amphiphiles with monoalkyl and dialkyl groups form multilamellar liposome composed of the bimolecular l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 29 شماره
صفحات -
تاریخ انتشار 2011